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RESTORATION OF TIME FUNCTIONS DISTORTED BY TRANSDUCERS

DESCRIBED BY DIFFERENTIAL BEQUATIONS

Heinz H. Grote

DA Task No. 3A99-27-005-02

Abstract

A method for the restoration of time functions which have passed
through a transducer described by one or more differential equations is
presented. The restoration of signals which have passed through a low-
yass filter is demonsirated and shows surprising similarity between the
original and the restored time functions. This method is especially
suited for application on the analog computer.
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RESTORATION OF TIME FUNCTIONS DISTORTED BY TRANSDUCERS
DESCRIBED BY DIFFERENTIAL EQUATIONS

OBJECTIVE

All transducers for which the relation between output and input is
described by a differential equation yield an output which is not an analog
replica of the input. The output is not simply determined by the input at
the same instant, but depends on the time history of the input.

Many efforts have been made to recover the input time function for its
measured output function; but in spite of considerable computational effort,
only moderate approximation is obtained. -

A simple method for the input restoration, recently proposed and
implemented by the euthor, is discussed in this report.

DISCUSSION
Definitions

A transducer will be considered in this discussion as a "black box"
which yields an output o(t) when an input i(t) is applied. The black box
comprises the entire transducinug system, including the coupling of the input
member to the medium of which a parameter will be measured and the loading
of "the output member. Output and input are functions of time, end in general
have different dimensions. With the exception of the theoretical cese that
the transducer has an infinitely wide frequency-band characteristic, the
relation between output and input is described by a differential equation
containing the input and its time derivatives and the output and its time
derivatives. This equation will be referred to as "transfer equation."

For the proposed method it is not necessary that the transfer eguation
be available in closed standardized form, with separated terms of input and
output. It is sufficient if the black box is described by one or more dif-
ferential equations, with each equation containing the same or other trans-
ducer parameters so long as input and output are among them.

The black box is constant with time, space, and other parameters, so
that an ordinary differential equation is sufficient to describe it. Black
boxes that vary with & known parameter yield to the same techniques as long
as they can be described by ordinary differential equations, with coeffici-
ents varying so slowly that all itransients have died out before the coeffici-
ent changes markedly. In case the transfer equation ies a linear differential
equation, it can be reduced to an ordinary complex algebraic eguation in the
frequency domain, with the frequency w as the only variable., The black box
is then described by the ratio of output O(w) over input I(w), which is
defined as the "transfer" function G(w).

For the case where not only input and output have to be compared, but
other parameters such as, for instance, input loading, are involved, the



"transfer matrix" is available. This is a mathematical shorthand expres-
slon for a system of linear differential equations describing in a compact
form several qualities of the black box. The transfer matrix has the
advantage that it can be assembled in a form that allows the study of the
influence of changes in particular elements of the transducer. It may be
composed of a group of matrices, each describing only part of the trans-
ducer. The individual matrix may then be independent of its neighboring
matrices.

Present Methods

The methods of input restoration known to the author make use of the
fact that, for linear differential equations as transfer equations, the input
time function cen be described by the sum of sinusoids of time-constant
amplitude, with each sinusoid having its characteristic amplitude, frequency,
and phase (Fourier transform). For each sinusoid the output O(w.) can then
be represented as the product of the sinusoidal input I(uk) of frequency w
and the complex transfer characteristic G(wyg).

o(wg) = T(wg) * G(wx).
If this equation is written in the form

I(wg) = Ofax) ’
Glw)
it represents the equation needed for input restoration. It cannot be
solved, however, when G(w,) is zero while O(wc) still has a finite value.
Then a complete restoration is not possible. An approximation can be
attempted by filtering out the critical frequencies for which G(w) = 0, or

by approximating the inverse transfer function ET?D—T by a function which is
not critical. The error is determined by the difference between the area

underneath the approximation of %&‘8_ and the area of j‘e%.é%; dw.
: o

Instead of transforming the output function from the time domain to the
frequency domain for each measurement and multiplying it with the inverse
transfer function and transforming this back to the time domain, proposals
have been made to perform this process only once for the transfer function,
or an equivalent, and determine the input time function by convolving the
output time function with the transformed transfer function equivalent.

This is based on the theorem that for linear transducers the output can be
obtained as the sum of individual outputs resulting from an infinite
sequence of input Dirac pulses

t
o(t) = [1(7) g(t-7) ar.
' -
In this equation, t is the instant of measurement, T is the instant the
Dirac pulse is applied, and g(t-T) is the response of the black box to a unit
Dirac pulse. This convolution integral allows computation of the output of
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a black box from the input-time funetion without taking refuge in the fre-
quency domain. —

In order to now apply the convolution for the reverse operation of come
puting the input for a given output, the reverse of g(t-T) has to be deter-
mined. The task now is to find an input function h, which generates a
Dirac pulse at the output of the black box, because the aim is to determine
the restored input by means of the convolution

t
i(t) = [ o(7) n(z-1) ar,

-0
where h(t-T) is the above-described inverse pulse-response function. Since
a Dirac pulse is equivalent to the sum of all frequencies from zero to
infinity with equal amplitude, it is evident that no function h can be found
that strictly satisfies the requirement. Approximations have been deter-
mined for some transfer functions. Examples of restoration attempts (see,
for instance, Ref. 1) yield only moderate results.

In summing up it can be stated that, in spite of considerable computa-
tional efforts, the methods sketched above yield only moderate results.

Proposed Method

Instead of utilizing the transfer function which requires the detour
over the frequency domain and which is applicable only when the transfer
equation is a linear differential equation, it will be shown that it is pos-
sible to stay with the differential equation in the time domain.

In the transfer equation the input to the transducer is the foreing
function of the homogeneous differential equation, and the task of finding
a mathematical solution is to determine that particular output function
which satisfies the differential equation. The digital computer solves this
problem by a sequence of iterations, and the analog computer by a feedback
system, which is in essence a continuously operating iteration circuit. If,
however, the output function is given, insertion of the output function with
all its required derivatives in the transfer equation yields directly the
input function with its derivatives. The next step, then, is to solve the
differential equation containing the unknown input function and its deriva-
tives and the above computed function containing the measured output and its
derivatives as forcing function.

The only limitation of the above procedure is the limit of accuracy
with which the derivatives can be determined. Quantizing of the output
function distorts the derivatives, and therefore digital computers cannot
easily be used for the prcposed restoration method. It is, however, ideally
suited for analog computation so long as the derivatives of the output
function are not distorted by noise inherent to the output signal. '

loise which might enter the computer during the restoration is reduced

by arranging the circuitry so that differentiation circuits are used only if
a substitution by integrators is not possible. The response of the
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differentiation circuits is then limited at higher frequencies which are
generally above the region of interest.

A typical example of how differentiation may be avoided in analog com-
putation is demonstrated for the following differential equations:

2 3
di do d“o 420

Al +B = =Co+D=f +E == +F —
at ° at at2 at3’

Integration of this equation yields

Afi at +Bi=cjodt+no+Ed°+F
J dat 2
at
This is rearranged;
-Fd: Ed°+Do+Codt-Bi-Aidt.

il _;ILIJIL[_J L_f_i

Assuming that d_‘; is available, its integration yields %, and further inte-
dt

gration o and |o dt. The flow pattern is indicated by the integration signs

end the arrows underneath the variables.

Another integration chain is obtain from the input i, and leads to
J‘l dt. After applying the proper factors and summing up all parts on the

2
right-hand side, F 470 is determined. Thus, the feedback loop is closed,
dt
and finally o is read out. Since, in general, transfer functions contain
higher order derivatives of the output than of the input, some differenti-
ation cannot be avoided in the process of restoring the input function.

For a known output, with the input to be determined, the above eguation
may be written as follows:

Afi dt + Bi = c[o dt + Do +E._.+Fd2°

L j‘Jl I_ITLdJ L_dﬁe

Here, the sign & denotes a differentiation. Two differentiations have to be
performed in the above example. (The number of differentiations is equal to
the difference in the degree of the differentials of output minus input.)
Two anelog differentiators are treated in appendix I.

Restoration Examvles

Some examples of input function restoration on the eanalog computer are
demonstrated below. One of the simplest transfer equations is

ari(t) = 0(t) + T gz

where a is & dimensional factor, i(t) the input function of time, o(t) the
output function of time, and T a time constent. This is the differential

equation of a low-pass filter, a first-order linear transducer. With the
N



| output o(t) measured, the task is to restore the input i'(t). This can be
achieved on the analog computer with the following circuit:

do -
o(t) at dt
| differentiator coefficient 7
, adder coefficient = | 1t (t)
o(t) o

To check the degree of restoration, a function i(t) was passed through a
low-pass filter simulated on the computer. The output o(t) of the filter was
recorded together with the original input function i(t) and the restored
input function i'(t).

Figure 1 shows the restoration of a square wave. After passing through
t
the low-pass filter, it is distorted to the known functions 1 - e~ T for the
1

rising part and € T for the decaying part. If the step persists long
encugh, saturation occurs; otherwise, decay occurs before the maximum is
reached. After passing through the restoration circuit, a perfect square
wave is obtained again.

- In Fig. 2 the restoration of staircase steps is demonstrated. Even
though the output curve shows only slight bends, the restored curve exhibits
gharp edges; and even the minutely sharp transients in switching from one
level to another are precisely restored.

In Fig. 3 a rapid sequence of steps is treated. Minute differences in
the reproduction of the edges are due to the response of the recording servo
end are not caused by the restoration circuit.

4 very convincing restoration is demonstrated in Fig. 4. Generally, the
sharp peaks are very semnsitive to distortion, but it can be seen that here
also the frequency response of the differentiators was high enough without
introducing noise.

It is pointed out that in the previous examples a very simple transfer
equation was implemented and that the signal-to-noise ratio was very favor-
able, Further investigations will show the influence of noise on the
restoration ability, especially on higher order transfer functions. Nore
complicated transfer equations will have to be investigated, and a restora-
tion will have to be attempted for nonlinear transfer equations.

CONCLUSION

The excellent results obtained with the restoration of signals passed
through a simple transducer encourage attempts to study higher order transfer
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functions and also nonlinear transfer functions. Special attention w:l.ll
have to be paid to noise that is superimposed on the signal

ACIQVWLED@WENT

The author is indebted to Mr. R. M. Marchgraber of USAELRDL for many

valuable discussions on the subject matter.
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APPEIDIX I

Analog Differentiation Circuits

. the following the two most essential differentiation circuits pre-
~« . in the literature are discussed. One circuit is best suited for
e o itted operational amplifiers or specialepurpose arrangements. This
ir .t consists only of one operational amplifier with a capacitor-resistor
o1 o and another capacitor-resistor feedback. The other cireuit, consist-
.. of two operational amplifiers and one integrator, is specially designed
)r general-purpose analog computers with committed input resistors and
feedback resistors or capacitors.

The first differentiation circuit is shown in the following figure.

C2
By
b
C1 R
e —| ! f“\§2 u
N\

The transfer equation of this circuit is

u = -ReC) £8 - (RyCL + ReCa) 2% du - RjRxL1C2 :“

For RyC3 = ReLo = T, this becomes

R ~ 12 n
u= -2 rde [l ~orde L35 a0 L4 (-1)R (ni1) P E_E].

de
Thereby the relative error in determining the differential quotient Fx is

de
A.—

dt=e=-2'rde+3'r2d2e- cee + (=1)7 (n1) rndne
de at at2

3t

For a sinusoidal input signal e = E exp jwt, the error ¢ is
€ = =j2Tw + 323722 - ... + 3% (<1)® (n+l) T° o7,
If T<¢<w, the relative error can be kept reasonably low.

11



The second differentiation circuit discussed looks quite different from

the first, but it will be shown that the transfer equations of both are very
similar.

e_—_.\ al\ u
D S

-% fu at <Hl/f

dat

® 13
&lg
L]

A comparison with the transfer equation of the previous circuit shows
that they are equal for Cp = O and Ry/Ry = a if T = RC;.

12



APPENDIX I1I
Experiment Iﬁstrumentation

The experiments on an input restoration for which the results were pre-
sented in the body of this report were performed with the instrumentation
described below.

A low-pass filter with the transfer equation

1(t) =o(t) + 7 g%

was simulated on the analog computer. Different signals i(t) were passed
through this simulation circuit and caused an output o(t) which was then fed
into the restoration circuit with an output i'(t). All three functions--

i, o, i*(t)--vere accessible for recording. Because of the limitation of an
x-y recorder to one plot at a time, arrangements had to be made to ensure
phase accuracy for consecutive plots. Synchronization was obtained by
recording all three functions together with a synchronization signel on an
endless magnetic tape. The overall circuit diagram is shown in Fig. 5.

The test signal was generated by means of a ramp generator and a
polarity reversing switch. Thereby, input signals in the form of zigzags
with different amplitudes were obtained and recorded on magnetic tape. The
tape was then played back.

The synchronization signal started the motion of the x-axis carriage of
the plotter, and the signal passed through the filter simulation and the
restoration circuit. A switch allowed the selection of the desired function.

The circuit of the filter simlation was

-0(t) /\
NN

\ o(t)

i(t) ——————J/

with the transfer equation

o(t) = [ [o(t) - 1(t)] at
i(t) = o(t) + %% .

13
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The circuit for the restoration of the input signal was

<h1/7
o) | ' > al’> ) RN -17(t)

This circuit made use of the second differentiation circuit described in
appendix I. It had the transfer equation

it(t) =o(t) + 7 - TQ,
(B =) v TR 2&

The accessories for the demonstration of the restoration of square wawi
were similar. The input function i(t) was obtained by changing the
position of two switches which were arranged in the following manner:

- 9 lh

o

The first switch changed the polarity of the signal, while the second switc!
allowed the choice of full voltage, no voltage, or half voltage. These sig-
nals were fed to the filter similation and the restoration circuits. Input
i(t), output o(t), and restored input i'(t) were fed over isolation ampli-
fiers to three input circuits of the magnetic tape recorder.

i(t) filter o(t) restoration i'(t)
circult circuit

15
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